Nanofiltration Membranes Synthesized from Polyethyleneimine for Removal of MgSO4 from Aqueous Solution (RESEARCH NOTE)

نویسنده

چکیده مقاله:

A novel work was performed for fabrication and modification of composite nanofiltration (NF) membrane by polymerization reaction between polyethyleneimine (PEI) and triphthaloyldechloride (TPC). the main purpose of this work was water treatment. polysulfone was applied as a main polymer of substrate. The result of reaction between PEI and TPC would be formation of polyamide layer on the membrane surface. SiO2 nanoparticles were used as modification agent. The fabricated membranes were characterized by Scanning Electron Microscope (SEM), Atomic Force Microscope (AFM), contact angle measurement and FTIR analysis. MgSO4 as one of the dissolved salt in water was investigated and these fabricated membranes were utilized to remove MgSO4 from water. Properties of substrate in addition to properties of NF membrane such as steric-hindrance and Donnan exclusion lead to a rejection of 89% for MgSO4.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fluoride Ions Removal using Yttrium Alginate Biocomposite from an Aqueous Solution (RESEARCH NOTE)

Removal of fluoride ions was investigated using a new adsorbent of yttrium alginate biocomposite (YALG). Effect of various parameters such as pH, contact time, initial concentration of fluoride ions and temperature on the sorption capacity of adsorbent was studied. Performing a mathematical assessment of fluoride sorption, isotherm and kinetics models including Freundlich & Langmuir isotherms a...

متن کامل

Removal of textile dye from aqueous solutions by nanofiltration process

The feasibility of employing nanofiltration (NF) in the decolorization of ionic (direct blue 86) and nonionic (disperse blue 56) dye aqueous solutions was investigated. The effects of feed concentration (60- 180 mg/l), pressure (0.5- 1.1 MPa) and pH (6- 10) were studied. Experiments were performed in a laboratory- scale set up by using a TFC commercial spiral wound polyamide nanofilter. The res...

متن کامل

Removal of Lead from Aquatic Solution Using Synthesized Iron Nanoparticles

   Due to its ability in chemical oxidation of contaminants, iron nanoparticle is a material of choice to remove lead ions from aquatic solutions. In this study a reduction method in solution phase was applied to synthesize thenanoparticles. Afterwards, the size of the synthesized particles were confirmed by Scanning Electron Microscopy. It is worth noting that th...

متن کامل

Decolorization of Methylene Blue from Aqueous Solution Using Ultrasonic / Fenton Like Process (RESEARCH NOTE)

Docolorization of Methylene Blue was investigating using a Ultrasonic/Fenton like reactor in batch mode. The effects of pH, reaction time, initial concentration of dye, H2O2 and Fe on the dye removal was studied. It was found that the increase of initial dye and H2O2 concentration and the increase of initial pH, are not beneficial for improving the dye removal efficiency. Increasing the dye con...

متن کامل

Removal of Cationic Dyes from Aqueous Solution using Organomodified Nanoclay

In this work, organomodified nanoclay has been used as the adsorbent for the removal ofbasic blue 41, cationic dye from an aqueous solution. The performance of the organomodified nanoclay was tested in a batch system under varying pH (2–12), adsorbent dosage (0.1–2 g L-1), initial dye concentration (10–60 mgL-1), and contact time (5- 100 min). The best conditions were achieved at pH of 7,...

متن کامل

Removal of Heavy Metals from Aqueous Solution by Mordenite Nanocrystals

This study examined the ability of the synthetic mordenite nanocrystal to remove Tl(III) and As(III) from an aqueous solution. The determination of the concentration changes of H+ and OH- quantities in the acidic (pH 3) and alkali (pH 9) treated mordenite nanocrystals were done by the potentiometric titration curves. The maximum uptake capacities (Qmax) of these metal ions using the mordenite i...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 27  شماره 8

صفحات  1173- 1178

تاریخ انتشار 2014-08-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023